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G. Lewicki (J. Approx. Theory 64 (1991), 181-202) studied strongly unique
minimal projections in reflexive Banach spaces and in I:' he obtained a complete
characterization of those hyperplanes that are the range of a strongly unique mini­
mal projection. In this paper we extend this type of characterization to hyperplanes
in Jx and I ~ . 'f) 1994 Academic Press, Inc.

O. INTRODUCTION

Let X be a real Banach space and Y a proper subspace of X. A bounded,
linear map P: X ~ Y is called a projection if and only if: Py =Y for any
yE Y. Obviously, if Y# {O}, then /lP/I;:, 1 for any projection P. The set of
all projections going from X onto Y will be denoted by P(X, Y). Set
),(Y,Xl=inf{IIPII;PEP(X, Yl}. A projection P is minimal if IIPII=
).( Y, Xl. The study of existence and unicity of minimal projections is
related to the study of best approximation.

In this paper we would like to investigate strong unicity of minimal
projections on hyperplanes of Ixc and 17. Recall that, given a Banach space
Band DeB, D #,p, an element y E D is called a strongly unique best
approximation (briefly SUBA) to x E B if and only if for every dE D,

Ilx-dll;:' IIx- yll +r IIy-dll,
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where the constant r> 0 is independent of dE D. Note that strong unicity
yields the continuity of the metric projection (see [6, p. 82])

x E B - PD(x) E D, where Pn(x) denotes the fixed element from the
set of all best approximants of x in D.

In the case of projections, condition (0,1) suggests the following:

DEFINITION 0.1 (See [8]). Let X be a real Banach space and let Y be
a proper subspace of X. An operator Po E P( X, Y) is called a strongly
unique minimal projection (briefly a SUM projection) if and only if there
is rE (0, 1] such that IIPII ~ IIPo II + r IIP- Po II for any PE P(X, Y).

In Section I we present a complete characterization of those hyperplanes
in len which are the range of a SUM projection. In Section 2 we will be
concerned with the case of 17. In the sequel some preliminary results will
be needed. We start with

LEMMA 0.2 (See [4]). To each I E l.~ there corresponds a unique element
hEll such that I - h E ct· Furthermore, IIIII = IIh II + III - h II·

LEMMA 0.3 (See [4, Thm. 1.4]). Let I and h be as described in
Lemma 0.2. In order that l(/-I(O), lxJ= 1, it is necessary and sufficient
that IIIII ~ 2 Ilh II oc'

THEOREM 0.4 (See [4, Thm. 2.4]). Let I and h be as described in
Lemma 0.2 and suppose that 1 = III II > 2 II h Iloc' Then

THEOREM 0.5 (See [4]). Let I and h be as in Theorem 0.4./- 1(0) has a
minimal projection if and only if there exists an x E IX! such that
IIxli = 1, jh(x)l = Ilhll, and 1(/ -h)(x)1 = III -hll·

By the proof of Theorem 0.3 in [4] it is easy to prove

THEOREM 0.6. Let I and h be as in Theorem 0.4. Then there is a unique
norm-one projection if and only if Ilhll + III- hll ~ 2 Ih io I lor a unique
index io.

If l(/-I(O), I",J> 1, then there is a unique minimal projection Po if and
only if hi # 0 for any i EN. The projection Po is given by

where zO, x E I 'x! ,
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for any n E N.

PROPOSITION 0.7 (See [3, 4]). Let f and h be as in Theorem 0.4. Let
PEPU-1(0), Ix), Px=x- f(x) z, where zEf-1(l). Then

IIPII =sup {II-hnznl + IZnl (l-Ihnl)}.
nEN

For more complete information about minimal projections on subspaces
of finite codimension in Ip , 1~p ~ 00, the reader is referred to [1-5]. Now
assume Y is a proper finite dimensional subspace of a real Banach space X.
Let S(X) be the unit sphere in X and ext (X) the set of its extremal points.
For P E P(X, Y) put

crit P = U E ext(X* ): II f 0 PII = IIPII }. (0.2)

By [8, Lemma 2.1], we get that for every P E P(X, Y) crit P is a nonempty
set. By Theorem 2.3 from [8] it is easy to deduce the following:

THEOREM 0.8. Assume X is a reflexive space and let Y c X be one of its
finite dimensional subspaces. For given Po E P(X, Y) and f E crit Po put

Then we have

A/= {XE ext(X): f(Pox) = IIPo II}. (0.3 )

(a) Po is a minimal projection if and only if for every PE P(X, Y)
there exists f E crit Po such that

inf{f(P - Po)x: x E A f } ~ O. (0.4 )

(b ) Po is a SUM projection with a constant r> 0 if and only if for
every P E P(X, Y) there exists f E crit Po such that

inf{f(P- Po)x: xEA/} ~ -r IIP- Poll· (0.5)

Remark 0.9. In Theorem 0.5 the set crit Po may be replaced by any set
CccritPo such that Cu -C=critPo and Cn -C=if;.

Remark 0.10 (See [5]). Let X be a Banach space and let Y c X be a
closed hyperplane. Then for each P E P(X, Y) there exists a unique yP E X
withf(yP)=1 (Y=kerf,fEX*, 11/11=1) such that Px=x-f(x)yP for
every x E X.
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Let us concentrate on this case: X = 17 and Y = ker f for some f E S(l:O).

Remark 0.11 (See [5J). For every PEP(X, Y),

IIPII = max II Pel II
i= 1, .... IJ

and

PROPOSITION 0.12 (See [5]). Let PoEP(X, Y) be a minimal projection.
Then II Po 1\ = 1 if and only if a functional f corresponding to Y has at most
two coordinates different from O. There exists a unique projection Po of norm
one if and only if exactI}' two coordinates off are different from O.

THEOREM 0.13 (See [5, 9J). Assume f E SU':xJ; f = (I,f2' ...,fn), 1~
12 ~ ... ~ In ~ 0, 13 > 0. For i, j ~ 3 let us set

and

I

a,= L /;,
j~ 1

I

b,= L III
j~l

(0.6)

Put

cj =min{.f;ehj _ 1 , aj _ I }.

i= i(f) = max{j~ 3: cj ~j - 3}.

(0.7)

(0.8)

If PoE P(X, Y) is a minimal projection then IIPo II = 1 + v, ~vhere

v = {2((f3j -!'~ 1)1(i - 2) + aJ;- 1_ i) - I
2(a; 13, I)

if a j <i-2

if aj~i-2.
(0.9)

Moreover, if al~ i - 2 the vector yO corresponding to Po has coordinates

y~=v(f3l-I;1)/2, ..., y?=v(f3,-fl- 1 l/2, y~=o for k=i+l, ... ,n

(0.10)

If a, < i - 2, then

y? = v((i - 2)( 13,- I 1- 1) +I, I - 1)/2

y~ = v(fj-l - II: I )/2 lor k = 2, ..., i (0.11)

y~=o lor k = i + 1, ..., n.
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COROLLARY 0.14 (See [9]). LetfES(I':XO) be as in Theorem 0.13. Put

5

where

{
i(f)

u = u(f) = m(f)
if f3i(f) > fir})

if f3i(f) = fir})'
(0.12 )

m(f) = min{j":; i(f) - 1: fi+ 1 = fi(J)}' (0.13 )

Ifa,,?-u-2 (resp. a,,<u-2) then theformula (0.10) (resp. (0.11) defines
for i= u the coordinates of the vector yO corresponding to Po.

(1)

First we state a lemma that will be of use later.

LEMMA 1.1. Let f E S(I~) and h Ell be as in Lemma 0.2. If 1 ,,:; 2 Ihioifor
a unique ioE N and if there is y Ef-l(O) such that II Y!I = IYio I> IYn I for any
n"# io then hn= 0 for n"# io and Ih io I = II f - hll = 1/2.

Proof Note that (2I hiol-lIh ll) IIYII",":; IhiollYiol- Ln#io IhnllYnl":;
Ih(Y)1 = l(f -h)(y)I":; Ilf -hlillyll",":; (2I hiol-lIh ll) Ilyilw' Since IYnl <
II yll '" for any n"# io, we have hn= 0 for any n"# io· So Ilhll = Ih io I=
Ilf -hll = 1/2.

Now we will prove the main result of this section.

THEOREM 1.2. Let f E S(l ~ ) and hEll be as in Lemma 0.2. Then there is
a SUM projection onto Y =f - 1(0) if and only if Y is the range of exactly
one norm-one projection, i.e., I,,:; 2 Ih io I for a unique io E N. (Compare with
Theorem 0.6.)

Proof "If" part. Assume 1 = Ilhll + Ilf +hll ,,:;2lh io l for a unique
ioEN. If we define zO=(I/h io )e io then we have f(zO)=h(zo)=1. Put
Pox = x - f(x )zo. Applying Proposition 0.7, it is easy to verify that
II Po 11= 1. We will show that Po is a SUM projection. To do this, take any
P E P(lu Y). According to Remark 0.10, there is z Ef - 1(l) such that
Px = x - f(x)z for any XE I",. Now we divide the proof into three cases.

Case 1. liz - z011 cr~ = IZio - z% I > IZn - z~ I for any n"# io. Observe that
Z-ZoE Yand by Lemma 1.1 we have: h=(1/2)sgn(h io )eio ' Consequently
zo= 2 sgn(hio)eio ' Since Ilz-zoll", = IZio-zZI = IZio-2 sgn(hio)1 > IZn-z~1 =
IZnl for any n"#io, we have IZiu-2sgn(hio)l?-suPn#iolznl. According to
Proposition 0.7, IIPII = max{ II-hioz'ol + IZ'ol (l-Ih'ol); I +suPn#lo IZnl}":;
max {II - hioz io I + IZio I (I - Ih io I); 1+ IZio - 2 sgn(hio)1 }.
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Set w = Z-zioeio' Then I(f -h)(w)1 = 1(f-h)(z)1 = If(z)-h(z)1 =
11 - h'oZio I = II - (1/2) sgn(hio)zio I ~ III - hll Ilwll = (1/2) SUPn" io IZn I and
consequently sUP""'o Iz,,1 ~ 12-sgn(h'olz;01 = Iz'o-2 sgn(h'o)l· Hence IIPII =
max {II - hioZio I + Iz io I (I - Ih io I); I + Iz[o - 2 sgn(hio)l} = max {II - (1/2 l
sgn(hio)zio 1+ Iz,o 1/2; 1+ IZio - 2 sgn(hio)1 } = max {( 12 sgn(h,o)- z'o 1+ IZio I)/2;
I + Iz io - 2 sgn(hio)1 }. Note that (12 sgn(h io )- z io 1+ Iz io 1)/2 < I + Iz,o - 2 sgn(hio)1
since IZio 1- 2 ~ IZio - 2 sgn(hio)l.

From this, it follows that

IIPII = I + Iz;o - 2 sgn(hio)1

liP-Poll = Ilz-zoll = IZio-2sgn(hio)1

and so

IIPII = 11P0 II + r IIP- Po II,

Case 2. Ilz-zoll.x)=lz'o-z~)I=lz"o-z~ol for some noi'io. It is clear
that IIPII ~ II-h"oz"ol + IZ"ol (I-Ih"ol)~ 1+ Iz"ol (1-2Ih"01). Since zo=
(I/h'o)e io and noi'io we have IIPII~I+lz"0-z~01(1-2Ih"01)=IIPoll+

(1-2Ihnol) liP-Poll ~ 11P011 +min n " io{1-2Ih"l} liP-Poll.

Case 3. Ilz-zollz > IZio-z7ol. Let c; be greater than O. Then there is an
index n, i'io such that Ilz-zoll:o < Iz", -z~, I+c; = Iz", I+ c;. Hence IIPII ~ 1+
Iz",1 (1-2 Ih",1) > I +(I-2Ihn,lHllz-zOlly) -c;)~ I +minn"io{1-2Ihnl}
(II P - Poll - c;). Passing with c; to 0 we obtain

"Only if" part. Let Po be a SUM projection. So there is r > 0 such that
II PII ~ II Po II + r II P - Po II for any projection P. Obviously Po is the unique
minimal projection, in fact if II PII = II Po II we have r II P - Po II = 0 and since
r>O we obtain P=Po.

If there is a SUM projection of norm-one, then by Theorem 0.6 and by
above argument we come to this thesis. Let Pox = x - f(x)zO be a SUM
projection, IIPoII> I, so suppose I> 2 Ih nI for any n E N. Then Po is exactly
one minimal projection and, by Theorem 0.6, we have: h" i' 0 for any n E N.
We can suppose without loss of generality that

or

Case 1, there is J1 E N: h" > 0 for any n > J1

Case 2, for any J1 E N there is n > J1 such that hn > O.
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(In fact if there is fA-o such that h" < 0 for any n> fA-o it is sufficient to
consider - I to return to case I.) Denote

IX" = 11 - hi (z? + (sgn hd h,,)1 + Iz? + (sgn hd h" I (1 - Ih l I)

p" = 11 - h,,(z~ - (sgn hd hdl + Iz~ - (sgn hI) hi 1(1 -Ih" I)·

Since Ct,,-+ll-h lz?I+lz?I(I-lh l l) there is VEN such that ':1.,,<
II-hlz~I+lz~I(I-lhll)+rlhll/2 for any n>v. Put Y,,=(sgnhd
[h"e l - hi e,,] E Y, z" = ZO + y" and P"x = x - I(x)z". Note that z" #- ZO and
so IIP"II>IIPo ll. Consequently IIP"II=suPk{ll-hkzk l+!zkl (1-lhkl)}=
max{':1.",/3", SUPk"'l,,,{II-hkZ~1 + Iz~1 (1-lh k l)}} = max{oc",/3,,}. (in
fact sUPkH,,{ll-hkz~1 + Iz~1 (l-Ihkl)} ~ II Po II < IIP"II). Let (1.">/3,,.
Then liP" II =':1." < 11-hlz~1 + Iz~1 (1-lh l l)+r Ih l l/2 ~ II Po II +r Ih l //2. But
liP" II ~ lIFo II +r IIP,,-Poll = II Po II +r Ilz,,-zoll = IIPol1 +r IIY"II ~ II Po II +
r Ih I I· By the fact hi#- 0 and r> 0 we obtain a contradiction which implies
IX" ~ /3" So liP" II = p". Hence 11 - h,,(z~ - (sgn hi) hill + Iz~ - (sgn h}) hll
(I - Ih" I)~ II Po II + r II P" - Po II = II Po II + r II z" - ZO II.

We recall that II Po II = ).( Y, loc), liP" - Po II = liz" - z011 ex: = II Y"llxc ~ Ihll,
z~ = (1IPolI- 1) sgn(h,,)/(1 - 2 Ih"I). Assume Case 1: h" >0 for n > fA-. Then
we have z~-+(IIPoll-l)=}', hence: 1+ly-lhlll~l+y+rlhll. Since
Ihll > 0, it implies 2}' ~ Ih11 (1 - r). Assume case 2: h"k > 0 nk < nk+ 1 for
any k. So Z~k -+}' and again we have 2y ~ Ih I I (1 - r). If we repeat the same
argument for h2 , h3 , ... we obtain: 2}l ~ Ih" I (I - r) for any n E N and conse­
quently y = O. This contradiction completes the proof of Theorem 1.2. I

Remark 1.3. We point out that no SUM projection can exist on hyper­
planes of Co' In fact, in this case the minimal projections are not unique
(see [5]).

Note that there exist hyperplanes in I: which posses SUM projections
of norm greater than one because of

THEOREM 1.4 (See [8]). Let Yc/: be a hyperplane i.e.: Y=I-I(O)lor
some 1= (/" ...,f,,) in 17 such that 11/11 = 1. Assume that Po is a minimal
projection. Then Po is a SUM projection olnorm greater than one if and only
if 0 < 2 /};I < 1 lor any i.

(2)

In this section we consider the case X = '7, Y = kerf, where 1=
(/1,/2, ...,f,,) E SU';.J· According to Remark 0.11 we may assume without
loss of generality that
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First we consider the simple case, when the norm of minimal projection is
equal to one.

PROPOSITION 2.1. Let Po E P(X, Y) be a minimal projection, II Po II = I.
Then Po is a unique minimal projection if and only if Po is a SUM projection.

Proof We may assume 1=11 ~12>°= = In' It is easy to verify
that if we put Yl = Y2 = 1/(/1 +12) and Y3 = =Yn = 0, the projection Py

induced by Y = (Y" ..., Yn) is a minimal projection. In order to prove that
Po = Pv is a SUM projection, we take an arbitrary PE P(X, Y) and write
P in the form P=I-I(-)/. It is clear that IIP-Poll=lIy-yPlll' If
vP < °then. ,

II (
1 I )11)_ I P -,P_-- ~P ,P "P

II ) ) 111 - ) 1 I, +12' }2 11 + 12' }3 , ••• , } n 1

n

= I IY;I=II/II,·
i= 1

Hence, by Remark 0.11, IIPII~IIPell1=ll-yil+llyPlll-lyil=l-yi+

11/111 +yi= 1+ lIyPlll ~ II Po II +j~ liP-Poll· If yf <0, by the same
reasoning, we get IIPII ~ II Po II +12 liP - Po II·

Now we suppose yi > yf > 0. It is evident that in this case II y - yP1I1 =
II y P

111 - 2 Iyf I, since yi +12 yf = I. Observe that

IIPII ~ I\ Pe 211 = 11 - 12 yfl +12(11 yPII, -I yfl)

= 1+12(11 /11, - 2 Iyfl) = IIPo II +12 II y - yP II L

= IIPol1 +12 IIP- Poll. (2.1)

If yf > yi > 0, calculating as in the previous situation, we get the desired
result. Since if Po is a SUM projection, it must be a unique minimal
projection, the proof is complete. I

REMARK 2.2. The constant 12 obtained in proving Proposition 2.1 is the
best possible.

Proof Take y E S(l7) such that l(y) = 1 and Yl > 12 > 0. Let PvE
P(X, Y) be a projection induced by y. Note that IIPvelll=II-Yli+
II Y 111 - IY I I = 1 + II y III - 2 Y I < I. Hence II P ,.11 = II Pve211: since II Pv II > 1
and IIPve; II = 1 for i ~ 3. Following (2.1) the proof is complete. I .

Now we will investigate the most difficult case, in which a norm of
minimal projection is greater than one. Following Remark 0.11 and
Proposition 0.12, we may assume without loss of generality that

n~3. (2.2)
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First let us prove some preliminary results

9

LEMMA 2.3. Let f satisfy (2.2). If for mE {3, ..., n} am> m - 2 there
exists Y E Ker f\ {O} satisfying the system of inequalities

n

Yj~ I Yi+ I IYi+ml
i= 1 i= 1
i#j

then there is y I E Ker f\ {O} with

m n-m

y) > L y} + L IY,I+ml
i= 1 i= 1
i#j

for j= 1,2, ..., m,

for j = 1, 2, ..., m

(2.3 )

(2.4)

(we define L7':;~ IYi+nl =0).

Proof Take Y E Ker f\ {O} satisfying (2.3).

Case 1. There exists j E { 1, 2, ..., m} with

n n-f11

Yj> I Yi+ L IYi+ml·
i= 1 i= J
i#j

Then we can find () > 0 with

n n--m h
Yj-(}>i~IYi+ i~1 IYi+ml+(m-l)(}(a

m
_fY

i#j

Let yJ = Yj - (), yJ = Yi + f}(jj/(am- jj)) for iE {I, 2, ..., m}\ {j}, yJ = Yi for
i E {m + 1, ..., n} and put yl = Lv:, ..., y~). Observe that

n m n

L: hy1 = L: fiy,l + L: fiYi=jjYj-jj()
i= 1 i= I i=m+ 1

m ( ()jj) n n
+ L h Yi+-_-. + L fYi= L fiYi=O'

i=1 am!; i=m+1 i=l
i#j

To finish the proof, take i E {l, 2, ..., m} \ {j}. Since am> m - 2, then
am - jj > jj(m - 3) which gives

(2.5 )
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Combining (2.3) with (2.5) we obtain

m n m

Y: > L Yk+ L lyLml,
k~ I k ~ I
k¥i

which establishes formula (2.4).

Case 2.

In n-nl

Yj= L Yi+ L IYi+ml
i= J i= 1
i¥j

for j= 1, 2, ..., m. (2.6 )

Hence Yl =Y2= ... =Ym'
To demonstrate the above equalities we substract equalities (2.6) for

fixed j, U E { 1, 2, ..., m}. Consequently by (2.6),

n-m

-(m-2)Yj= L IYi+ml·
i= 1

If n = m, Y == 0, a contradiction. If m < n, then

n m n--m

0= L f;Yi= L f,Yi+ L f;+mYi+m
i= 1 i= 1 i= I

n-m
=Yl,am+ L j;+mYi+m~Ylam+ L If,+mYi+ml

i= 1 i= 1

(2.7)

/l-m n -- In

~Yl ·am+ L IYi+ml <Yl(m-2)+ I IYi+ml =0
i= I i=]

Since, by (2.7), Yl < 0 and am> m - 2, we may exclude Case 2. The lemma
is proved. I

LEMMA 2.4. Let f E SW'xc) satisfy (2.2) and let f2 < 1. Let mE {3, ..., n}
fulfill am < m - 2, Gm - I > m - 3, f,n > O. If there exists Y E Ker f\ {O}
satisfying the system of inequalities

1
YJ~ ~t>'I+ n~~:IIY1+m_ll

i¥)
m-I n-m

Ym~ L Y,+ L [Y,+ml,
1= 1 1= 1

for j = 2, ... , m - 1

(2.8 )
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then there exists y l
E Ker f\ {O} Yo.'ith

11

1
Vi > m~ I VI + 11-~+ 1

1
,,1 I

~j ~ ... , ~ Jl+m-l
1= 1 1= I
1#;
m-I n-m

y~> L y: + L IY:+ml.
t= 1 1= I

for j = 2, ..., m - 1

(2.9)

Proof Take Y E Ker f\ {O} satisfying (2.8) and consider three cases.

Case 1.

m-I n-m

Ym> I Yi+ I IYi+ml;
1=1 i=}

Then we can select B> 0 with

Put yl=Yl-B, y;J=y;+((J!am_I-I) (j=2, ...,m-Ij, y1=y;. for;
j = m, ... , n. Observe that

11

= L J;y;=O.
i= 1

Since am_ l >m-3, B!am__ I -l>-B+(m-3)(B!am_ 1 -3). Combining
this inequality with (2.8), we get

m-I n-m+l

vII > '" Y ,I + '" I v 1 IJ i..J L.., J i+m-I
;= 1 i= I
i#j
m-I n-m

y~> I y}+ I fY;+ml,
i= 1 i= 1

which proves our claim.

Case 2. There exists j E [2, ..., m - I} with

for j = 2, ... , m - I

m-J n-m+l

Yj> I Yi+ I !Yi+m-II;
;= 1 i= 1
i-:;ej
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nt-J n-rn+J

Yj-Ij- ' 8> L Yi+ L IYi+m-II+8,
i= I i= I
i#j

for 8> 0 sufficiently small. Since 12 < 1,

8- I
j
-18<0 (2.10 )

Put yl = (y:, ..., J/~), where Y: = YI + 0, Y) = Yj- /j-I 0, Y! = Yi for i # 1,j. It
is clear that Y I E Ker f Adding (2.8) to (2.10), we get for each k E

{2, ... ,m-l}\{j}

m--l n-m+l

Yk> L y}+ L IY!+m-11
i= 1 i= L
i",k

and

m-I n-m

Y~> L Y! + L IY!+ml,
i= I i= 1

which completes the proof of this case.

Case 3.

m~l n-m+l

Yj= L Yi+ L IYi+m-11
i= 1 j= 1
i", j

m-l n-m

Ym= L Yi+ L IYi+ml·
i= I i= I

for j = 2, ..., m - 1 (2.11 )

(2.12 )

First we demonstrate that Ym > o. If no, then by (2.11) for every j E {2, ...,
m-I}

m- L n--m+ 1

Yj= L Yi+ L IYi+m-II-Ym·
i= 1 i= 2
i", j

(2.13 )

Substracting inequalities (2.11) for fixed j, k E {2, ..., m - I} we get
Y2=Y3= ... =Ym-I· According to (2.12) and (2.13) we obtain Ym-l=O
which gives 0 = :L7:{"+ 1 IYi+m-ll +YI. Since YE Kef I and 12 < 1, then
Y i + m - 1 = 0 for i = 1, ... , n - m + 1 and consequently Y == 0, a contradiction.
Hence, Ym> 0 and reasoning as before we get Y 2 =Y 3 = ... =Ym- 1 •

Subtracting (2.11) from (2.12) we obtain Y2 - Ym =Ym - Y2 and so
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Y2 =.Y3 = ... = Ym > O. Following (2.12) YI = - (m - 3) Ym - 'L7::t IYi+m I·
Hence,

n m n n

0= L IYi=L IYi+ L IYi= -(m-3)Ym- L ly;1
;= I ;= 1 i=m+ J ;= rn + 1

" "
+(am-t)Ym+ I f;y;=(am-m+2)Ym+ I fi)'i

;=m+l

"- I IYil <0,
;=m+ ]

;=m+]

since am < m - 2 and Ym > O. Thus we can exclude Case 3 and the proof of
Lemma 2.4 is fully complete.

REMARK 2.5. Let P E P(X, Y), Y = Ker f, where f satisfies (2.2). Put for
i= 1, ..., n C;= {gEext(X*): ±(goP)e;= IIPe;II}. Then gEcrit P (see (0.2))
if and only if gE UiEA C i , where

A = liE {I, ..., n}: IIPe i li = IIPII}. (2.14)

Proof Let gECritP. Since extX={±ei}7~1±(goP)ei=IIPeill for
some i E {I, ... , n}. It is clear that i EA. The reverse is obvious.

LEMMA 2.6. Let f E S(X*) satisfy (2.2) and let Po E P(X, Y) is a minimal
projection determined by (0.10) and (0.11) for u = u(f) (see Corollary 0.14);
then:

(a) If au> u - 2 and u = i(f) (we write u = u(f) for brevity) then
A={I, ...,u}. If au>u-2 and u=m(f) then A={1, ... ,L} where
L = max{i ~ m + I: fi- 1 = Pm} ("'e write m = m(f); see (0.13)).

(b) Iff2<1, au_ l >u-3 andau<u-2, then A={2, ...,L} where
L = max {i ~ u: fi = fu }.

Proof (a) Let yO be given by (0.10). It is easy to verify that

and that the following system of inequalities is consistent:

(2.15 )

{
I +h(llyOII-2yJ)= 1+ V= IIPol1
1+h II yO II ~ 1+ v = II Po II

for j = 1, ..., u

for j~ u + 1.
(2.16 )

According to Remark 0.11 and (2.15), we get the desired result.
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(b) Let yO be given by (0.11). As in the previous case it is easy to
check that

and that the following system of inequalities is consistent:

(2.17)

{
I +h(llyOII-2YJ)= I +v= IIPol1
1+ f i II yOIl ~ I + v = IIPo II

for j= 2, ..., U

for j~ u + I
(2.18 )

By Remark 0.11 we get the desired result.

Now we are able to prove the main result of this section.

THEOREM 2.7. Let f E S(X*) satisfy (2.2) and let u = u(f) be given by
(0.12 ).

or

(2.19 )

au-I> u - 3, and au < u-2, (2.20)

then the projection given by (0.10) and (0.11) is a SUM projection.

Proof Let us consider a function f: S y --+ ~ given by

<p(y) = min{fklglg(y): gE C},

where

(2.21 )

C= {gEcrit Po: g(PoeJ = IIPo II for some iE {l, ..., n}} (2.22)

and

k(g) = min{iE {I, ..., n}: g(PoeJ = IIPo II}. (2.23 )

Assume that we can prove that for every yES y <pCv) < O. Hence by the
compactness of S y the constant y = sup{<p(y): yES y} is strictly negative.
We will prove that Po is a SUM projection with r= -yo To do this,
according to Theorem 0.8(b) and Remark OJ it is enough to demonstrate
that for every P EP(X, Y) there exists g E C (It is clear that C u - C =
crit Po and C n - C = <p) with

inf{g(P- Pole;: e;EA g} ~ -r I\P- Poll

(see (0.3)). So fix PEP(X, Y) and let P-Po=f(-)y for some yEY
(we may assume y#O). Select gEC with j~<,l()g(yIIIYII)=<p(ylllyll).
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Note that for every ejEAg, we have g(P-Po)ej=fjg(y/IIYII) Ilyll ~
fk(g)g(Y/11 yll) II yll since ~(y/II yll) < O. Hence,

inf{g(P- Po) e j: ejE A g }

=fk(g)g(y)=~(y/Jlyll) Ilyll ~y Ilyll = -r liP-Poll,

which, according to Theorem O.8(b) gives our assertion.
To complete the proof, it suffices to show that ~(y) < 0 for every yES y.

By (2.22), k(g)EA for every gEe (see (2.14». By RemarkO.ll,fk(g»O.
Hence accordingly to (2.21), it is enough to verify that for every yES y

inf{ g(y): g E C} < O. By contradiction, assume that there exists yES y with
g( y) ~ 0 for every g E C and consider two cases.

Case 1. au> u - 2. If u = i(f) then, following Lemma 2.6(a), the
set corresponding to Po A = {I, ..., u}. Consequently, by Remark 2.5
and (2.22), e=U7~,Dj where Dj={gEextX*:(goPo)ej=IIPoll}. By
Remark O.ll,

D j = {(-I, ..., -1, I j , -I, ..., -l u, 1: 1 , ••• ,I:n-ul:

Hence the inequalities g(y) ~ 0 for every g E C give system (2.3). According
to Lemma 2.3, we may find y' E S y with g(y') > 0 for every g E C. Hence
for every gE e and ejE A g

sInce i~ n and fu>O. (2.24)

Now define P=Po+f(·)yl and note that (2.24) implies

(2.25 )

According to Theorem 0.8(a) and Remark 0.9, Po is not a minimal projec­
tion, which contradicts Theorem 0.10. If u(f) < i(f), then the set A is equal
to {I, ... , L} where L is given in Lemma 2.6. Hence e = U7~ 1 D j where D i

for i = I, 2, , u are as above and for i ~ u + 1. D j = {( -I, ..., -I, 1u' 8 1 , ... ,

I: i _ j , Ij,l:j, ,l:nu_Jl:I:Eext(l':c-U-l)}. So to the system (2.3) we must
add the system

640/78/1-2

u n -- u

Yj~ I Yj+ I IYj+ul
i= 1 i= 1

j~j

for j = u + 1, ..., L.
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By Lemma 2.3, there exists

i EKer f

with

u n u

y» ~ y~+ L IY~+ul
i= 1 i= I
i#i

for j= 1, 2, ... , u.

Now replace f by fl=(l,f2, ...,fu,f~+I"··,f~) where fU+I>f~+J~
... ~ f~. Note that in view of Theorem 0.10 the operator

(2.26 )

(yO is the vector from X corresponding to Po) is a minimal projection onto
Ker fl. If the change of fu + I is slight, then modifying slightly the n - u last
coordinates of vector yl we get y2=(y:, ...,y~'Y~+1' ...,y~)EKerfl
satisfying (2.4). Since f3 u < 1/f ~ + I' reasoning as in the previous situation by
Theorem 0.8(a) we get that pb is not a minimal projection onto Ker fl;
this is a contradiction.

Case 2. au<u-2,au _ 1 >u-3,f2<1. Since au<u-2, by (0.8),
u = i(f). If f.t+ I <fu, according to Lemma 2.6,

A = {2, ... , u}

where, in view of Remark 0.11,

and

and

for i = 2, ..., u - 1

Hence the inequalities g(y) ~ 0 for every g E C form system (2.8). By
Lemma 2.4 there exists yl E Y with g(yl) > 0 for every g E C. Reasoning as
in Case 1, we get a contradiction with the minimality of Po.
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If fu + 1 = fu, then C = u;~ 2 Du where L is defined in Lemma 2.6 and

for i~ u

17

(for i= 2, ... , u the sets D i are defined as before). Hence to the system (2.8)
we must add the following inequalities:

u-l lI~U

Yj~ L: y,+ L /Yi+u-II
i=1 i=]

;1'j

for j~ u + 1.

According to Lemma 2.4, there exists y l E Y with

and

u-l n~u+1

"Jl> " ",1+ "1,,1 1.J' L,.J' L, .J'i+u-I
i= 1 ;= 1
i l' j

for j = 2, ..., u - 1

u-l n-u+l

y~>Iy]+ L !Y]+u-l!'
i= 1 i= 2

Modifying, as in Case l,fontof 1
, where

and yl to y2 belonging to Ker fl, we get a contradiction as in Case 1. The
proof of Theorem 2.7 is fully complete I.

In [9] it was shown by a different method that the conditions (2.19) and
(2.20) are equivalent to the unicity of minimal projection. Combining this
with Proposition 2.1 and Theorem 2.7 we get

THEOREM 2.8 Let Po E P(X, Y) be a minimal projection. Then Po is a
unique minimal projection if and only if Po is a SUM projection.
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