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G. Lewicki (J. Approx. Theory 64 (1991), 181-202) studied strongly unique
minimal projections in reflexive Banach spaces and in /7, he obtained a complete
characterization of those hyperplanes that are the range of a strongly unique mini-
mal projection. In this paper we extend this type of characterization to hyperplanes
in !, and /]. T 1994 Academic Press, Inc.

0. INTRODUCTION

Let X be a real Banach space and Y a proper subspace of X. A bounded,
linear map P: X — Y is called a projection if and only if: Py =y for any
ye Y. Obviously, if Y+ {0}, then |P|| > 1 for any projection P. The set of
all projections going from X onto Y will be denoted by P(X, Y). Set
MY, X)=inf{|P|; PeP(X, Y)}. A projection P is minimal if |P| =
A(Y, X). The study of existence and unicity of minimal projections is
related to the study of best approximation.

In this paper we would like to investigate strong unicity of minimal
projections on hyperplanes of /. and /7. Recall that, given a Banach space
B and Dc B, D# ¢, an element ye D is called a strongly unique best
approximation (briefly SUBA) to x e B if and only if for every de D,

Ix—dll =z lx—yll+r

ly—4dl|, {0.1)
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2 BARONTI AND LEWICKI

where the constant r > 0 is independent of de D. Note that strong unicity
yields the continuity of the metric projection (see [6, p. 82])

x € B— Pp(x)e D, where P,(x) denotes the fixed element from the
set of all best approximants of x in D.

In the case of projections, condition (0,1) suggests the following:

DEerFiNITION 0.1 (See [8]). Let X be a real Banach space and let Y be
a proper subspace of X. An operator Pye P(X, Y) is called a strongly
unique minimal projection (briefly a SUM projection) if and only if there
i1s re (0, 1] such that |P|| = |Py|| + 7 ||P— Py for any Pe P(X, Y).

In Section | we present a complete characterization of those hyperplanes
in /., which are the range of a SUM projection. In Section 2 we will be
concerned with the case of /}. In the sequel some preliminary results will
be needed. We start with

LemMa 0.2 (See [4]). To each f €l there corresponds a unique element
hel| such that f —hecy. Furthermore, | f)| =kl +1.f— Al

LEmMMa 0.3 (See [4, Thm. 1.4]). Let f and h be as described in
Lemma 0.2. In order that A(f~'(0),1,.)=1, it is necessary and sufficient
that ||/ <2 (|A] ..

THEOREM 0.4 (See [4, Thm.2.41)). Let f and h be as described in
Lemma 0.2 and suppose that 1 =| || >2 |kl .. Then

M), 1.1)=1+[Ilf—hll + Y Al (1-2 Ihfl)‘] :

i=1

THEOREM 0.5 (See [4]). Let f and h be as in Theorem 0.4. f ~'(0) has a
minimal projection if and only if there exists an xel, such that

lxll =1, |a(x) = [[All, and |(f —hm)x)| = [/ —Al.
By the proof of Theorem 0.3 in [4] it is easy to prove

THEOREM 0.6. Let f and h be as in Theorem 0.4. Then there is a unique
norm-one projection if and only if |kl + I f—h| <2|h,| for a unique
index i,.

If A(f ~'(0),7,)> 1, then there is a unique minimal projection P, if and
only if A,#0 for any ie N. The projection P, is given by

Pox=x— f(x)z° where z° xel,,
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and

o_(ASN0) 1, )~ 1)sgnh,
" 1—2h,|

4

forany neN.

ProrosiTiON 0.7 (See [3,4]). Let f and h be as in Theorem 04, Let
PeP(fY0),1,), Px=x— f(x)z, where ze f ~'(1). Then

1P| =sup {{1 —h,z,{+ |z, (1 —[h,])}.

ne N

For more complete information about minimal projections on subspaces
of finite codimension in /,, 1 <p < oo, the reader is referred to [1-5]. Now
assume Y is a proper finite dimensional subspace of a real Banach space X.
Let S(X') be the unit sphere in X and ext (X) the set of its extremal points.
For Pe P(X, Y) put

crit P={ feext(X*): || /> Pl = | P||}. (0.2)

By [8, Lemma 2.1], we get that for every Pe P(X, Y) crit P is a nonempty
set. By Theorem 2.3 from [8] it is easy to deduce the following:

THEOREM 0.8. Assume X is a reflexive space and let Y < X be one of its
finite dimensional subspaces. For given Pye P(X, Y) and f ecrit Py put

A= {xeext(X): f(Pox)=|Pol }. (0.3)

Then we have

(a) Py is a minimal projection if and only if for every Pe P(X,Y)
there exists f e crit Py such that

inf{ f(P— Py)x: xe A,} <0. (0.4)

(b} Py is a SUM projection with a constant r>0 if and only if for
every Pe P(X, Y) there exists fecrit P, such that

inf{ f(P— Po)x: xe A, } < —r | P= Py|. (0.5)

Remark 0.9. In Theorem 0.5 the set crit Py may be replaced by any set
C ccrit Py such that Cu —C=crit Py and Cn —C=¢.

Remark 0.10 (See [5]). Let X be a Banach space and let Yc X be a
closed hyperplane. Then for each Pe P(X, Y) there exists a unique p”e€ X
with f(y?)=1 (Y=ker f, fe X* | f|=1) such that Px=x— f(x) p” for
every xe X.
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Let us concentrate on this case: X =/7 and Y =ker f for some f e S(/7).

Remark 0.11 (See [5]). For every Pe P(X, Y),

Pl = max | Pe; |

and
IPe | =11=Fiy? 1+ 1L Ay2i—=1yPD).

PrOPOSITION 0.12 (See {5]). Let Pye P(X, Y) be a minimal projection.
Then || Pyl =1 if and only if a functional f corresponding to Y has at most
two coordinates different from Q. There exists a unique projection Py of norm
one if and only if exactly two coordinates of f are different from 0.

THEOREM 0.13 (See [5,91). Assume feS(I%); f=(1, 13 f), 12
2z 2/,20 />0 For i, j=3 let us set

a;= Z Ji» b= Z f/ ' Bi=b,/(i—2), (0.6)

and
c,=min{fb, ,,a,_,}. (0.7)

Put
i=i(f)=max{j>3:¢,2j—3}. (0.8)

If Pye P(X, Y) is a minimal projection then |Py|| =1 + v, where

v_{z((ﬂi“f{I)("—Z)‘*a.‘fi‘l“i)*l if a;<i—2
- 2a, p,—i) ! if a;=2i-2.

Moreover, if a; =i~ 2 the vector y° corresponding to P, has coordinates

W =v(Bi=f7 )2 s ¥I=WBi~F72  ¥e=0  for k=i+1,.,n
(0.10)

(0.9)

If a,<i—2, then

Yi=v((i=2)B—f )+ S =12
W=v(f = Y2 for k=2, (0.11)
ye=0 for k=i+1,..,n
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CoroLLARY 0.14 (See [9]). Let f€S(I")) be as in Theorem 0.13. Put

- _ i(f) if ﬁi(f)>fiff1)
u=ulf) {m(f) i Bupy=ih, (0.12)
where

m(f)=min{j<i(f)-1: f;, \=Ffin} (0.13)

If a,zu—2 (resp. a,<u—2) then the formula (0.10) (resp. (0.11)) defines
for i=u the coordinates of the vector y° corresponding to P,.

1
First we state a lemma that will be of use later.

LemMa 1.1. Let feS(I%)and hel, be as in Lemma 02. If 1 <2 |h, | for
a unique ige N and if there is y e f ~'(0) such that || y|| =)y, >|y,| for any
n# iy then h,=0 for n#i, and |h,\ = || f~hl|=1/2.

Proof. Note that (2|h,| = Al I yll. <Uhgl il =2, .0 lAal I pal <
) =1 =R <N S =hl Iy <2 h] —ihl) IIyll.. Since |y,|<
|yl for any n#i,, we have h,=0 for any n#i,. So ||h|=|h,|=

IS —hl=1/2

Now we will prove the main result of this section.

THEOREM 1.2. Let feS(I*)and hel, be as in Lemima 0.2. Then there is
a SUM projection onto Y =f~'(0) if and only if Y is the range of exactly
one norm-one projection, ie., 1 <2 |h,| for a unique ize N. (Compare with
Theorem 0.6.)

Proof. “If” part. Assume 1= |kl + || f+h|<2]|h,| for a unique
ice N. If we define z°=(1/h,)e, then we have f(z°)=h(z")=1. Put
Pyox=x— f(x)z° Applying Proposition0.7, it is easy to verify that
[Py ll = 1. We will show that £, is a SUM projection. To do this, take any
PeP(l_,Y). According to Remark 0.10, there is ze f '(1) such that
Px=x— f(x)z for any xe/, . Now we divide the proof into three cases.

Case 1. ||z—2°, =l|z,,— 20| >|z,—z)| for any n+#i,. Observe that
z—z%¢ Y and by Lemma 1.1 we have: A= (1/2)sgn(h,)e,. Consequently
2%=2sgn(h,)e,. Since [[z—2°, =z, —z) | = |z, — 2 sgn{h )| > [z,— 2| =
|z,| for any n#i,, we have |z, —2sgn(h )| =sup,., |z,|. According to
Proposition 0.7, |P| =max{|[1—h 2z, |+]z,] (1~ 1k ]); 1 +sup, ., |z,]} <
max{ |1 —hyz, | + 1z, (1= 1) 1+ )z, — 2 sgn(h,)] ).
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Set w=z—z.e, Then [(f—m)w)l=I|(/—m()=I1/(z)-hz)l=
1T —hyz,t =11 = (1/2) sgn(hy)z, | < | f—Aliwll = (1/2) sup,, ., |z,] and
consequently sup,, ., |z,! = 12—sgn(h,)z,| = |z,,— 2 sgn(h,)|. Hence |P|| =
max{|l — h,z, | + |z, | (1 = A, 1) 1 + |z, — 2sgn(h,)|} = max{|1 —(1/2)
sgn(h, )zl +12,41/2; 1+]z,,—2 sgn(h,)| } =max{(|2 sgnlh)—z, | +12,1)/2;
14|z, —2sgn(h,,)| }. Note that (|2sgn(h,))—z, |+ 1z, [)/2< 1 +|z,,—2sgn(#,)|
since |z, | — 2 < |z,,— 2 sgn(h,)l.

From this, it follows that

1Pl =1+ |z,,— 2 sgn(h,)l
|P—Pyll=lz—2°l = |z, — 2 sgn(h,)|

and so
[P =Poll +r | P—Poll,

where r=1=min,, {1 -24,[}

Case 2. ||z—2°|, =1z~ 20| =|z,,— 23| for some ny#iy. It is clear
that [P 2 |1 — Ay zu| + (20| (1= 1y |) 2 1+ |2 (1—2 [y [). Since z°=
(1/h,)e, and ny#i, we have |P| =1+ |z,,0—z20| (=21, )=1Poll +
(1=21h, ) 1P — Poll 2 | Poll + min, ;{1 =2 |A,l} | P~ Pyll.

Case 3. ||z—:z°||,. > |z, —z{ |. Let ¢ be greater than 0. Then there is an
index n, # i, such that |z —z°  <|z, —z) | +e=]z, | +& Hence |P| =1+
2, (1 =2 R, ) > 14+ (1 =21k, )z =2, — €)= 1 +min, . {1 —2]h,|}
(| P — Pyll —¢). Passing with ¢ to 0 we obtain

1Pl =1+ min, 4, {1 =2 1h,|} [P — Pyll.

“Only if” part. Let P, be a SUM projection. So there is r >0 such that
P = | Poll +r ||P— Py| for any projection P. Obviously P, is the unique
minimal projection, in fact if | P}j = || P, || we have r ||P — P, |} =0 and since
r>0 we obtain P=P,.

If there is a SUM projection of norm-one, then by Theorem 0.6 and by
above argument we come to this thesis. Let Pyx =x — f(x)z° be a SUM
projection, || Py| > 1, so suppose 1 >2 |h,| for any ne N. Then P, is exactly
one minimal projection and, by Theorem 0.6, we have: 4, # 0 for any ne N.
We can suppose without loss of generality that

Case 1, there i1s pe N: h, >0 for any n>py
or

Case 2, for any pe N there is n> u such that 4, >0.
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(In fact if there is uo such that h,<0 for any n >y, it is sufficient to
consider — f to return to case 1.) Denote

o, =1~ h,(z) + (sgn /1) b)) + 128 + (sgn k) b | (1= 1y 1)
Bu=11=h,(z;~(sgn ) hy)| + |z5— (sgn hy) hy | (1 — A1),

Since a,—|1—h, 21+ 12| (1 —1h,|) there is veN such that «,<
—h 20+ 129 (1 =AY +7r |k |2 for any n>v. Put y,=(sgnh,)
[h,e,—h,e,}eY, z,=z"+y, and P,x=x — f(x)z,. Note that z, # z* and
so || P, |l > || Poll. Consequently ||P, || =sup,{|1—h,z,|+)z;] (1—1|hc])} =
max{a,, B, SUP;yq i1l — Bzl + 128 (1 = | })}} = max{a,, B,}. (in
fact supypy i1 — ezl + 1280 (1 = i D} < UPo I < I1P,1). Let 2,>B,.
Then [P, |l =, <|1—h 201+ 27| (1= lh )+ 7[R 1/2< | Poll + 7 1,172, But
WP 2 Pl 47 1P — Poll = I Poll + 7 llz,— 20 = IPoll +r 3l 2 I Poll +
r |4, |. By the fact 2, #0 and r > 0 we obtain a contradiction which implies
%, <f, So ([P, =p, Hence [l —h,(z5—(sgnh,)h)+ (23— (sgn h;) k|
(1=, D= | Poll +1 [P, — Poll = | Poll +71 llz,— 2°).

We recall that [[Poll = A(Y, 1), 1P, = Poll =z, = 2% = | ¥ull o = 111,
2= (| Py) — 1) sgn(h,)/(1 —2 |h,|). Assume Case 1: h,>0 for n> p. Then
we have z0— (||Pyl| —1)=y, hence: 1+|y~|h;||=1+7y+r|h,). Since
|h] >0, it implies 2y < |A;) (1 —r). Assume case2: h, >0 n.<n,,, for
any k. So :Sk ~ v and again we have 2y < |h,| (1 —r). If we repeat the same
argument for h,, k5, ... we obtain: 2y < |h, | (1 —r) for any ne N and conse-
quently y =0. This contradiction completes the proof of Theorem 1.2. |

Remark 1.3. We point out that no SUM projection can exist on hyper-
planes of ¢,. In fact, in this case the minimal projections are not unique

(see [5]).

Note that there exist hyperplanes in /" which posses SUM projections
of norm greater than one because of

THEOREM 1.4 (See [8]). Let Y !”, be a hyperplane ie.. Y= f~'(0) for
some f=(f, .. [f,) in 1] such that | f| =1. Assume that Py is a minimal
projection. Then Py is a SUM projection of norm greater than one if and only
fo<2|fl<1 for any i.

{2)
In this section we consider the case X =[], Y=kerf, where f=

(f1s f2s - [,)€SW7)). According to Remark 0.11 we may assume without
loss of generality that



8 BARONTI AND LEWICKI

First we consider the simple case, when the norm of minimal projection is
equal to one.

PrOPOSITION 2.1. Let Pye P(X, Y) be a minimal projection, || Py = 1.
Then P is a unique minimal projection if and only if Py is a SUM projection.

Proof. We may assume 1=f,>f,>0= ... =f,. It is easy to verify
that if we put y, =y, =1/(f; + f>)} and y;= --- =y, =0, the projection P,
induced by y=(y,, .., »,) is a minimal projection. In order to prove that
P,=P, is a SUM projection, we take an arbitrary Pe P(X, Y) and write
P in the form P=7—f(-)y" Tt is clear that |P— Pyl =|y—»"ll,. If
1 <0 then

1

1 1
I o — P _ P P . ,P
”) Y ”l “(.}1 f|+f2’}2 fl+f2,}3a .}n)

=3 ="
i=1
Hence, by Remark 0.11, [P}l = [[Pe, || =1 —p7 |+ [yl —IyTI=1—yT+
1Pl +yT=1+1p" 1 2 Poll + 2 1P —Pyll. I pJ <0, by the same
reasoning, we get ||[P]| = [Pyl + f2 |P— Pyl
Now we suppose yF > yZ > 0. It is evident that in this case | y — y*||, =
Il »%Il, — 2|y, since y¥ + f, ¥ = 1. Observe that

1PN = liPerll =11 = fo 351+ U ¥" 1~ 1y5 1)
=1+ L0y =21yiD =Pl + L2 1y =y°I
=[[Poll +/5 1P = Pol. (2.1)

If y¥>yF >0, calculating as in the previous situation, we get the desired
result. Since if P, is a SUM projection, it must be a unique minimal
projection, the proof is complete. |

REMARK 2.2.  The constant f, obtained in proving Proposition 2.1 is the
best possible.

Proof. Take yeS(!}) such that f(y)=1 and y,>y,>0. Let P e
P(X, Y) be a projection induced by y. Note that [P e,| =1 -y, |+
Iylli=tyil=1+{ylly =2y, <1l. Hence |P,|=|Pe,l, since |P,|>1
and ||P,e;|| =1 for i = 3. Following (2.1) the proof is complete. ||

Now we will investigate the most difficult case, in which a norm of
minimal projection is greater than one. Following Remark 0.11 and
Proposition 0.12, we may assume without loss of generality that

l=fi2foz - [,20, f,>0, n>3 (22)
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First let us prove some preliminary results

LemMMA 23. Let f satisfy (2.2). If for me{3,..,n}a,>m—2 there
exists y € Ker f\{0} satisfying the system of inequalities

n

Y,z z yit+ Z [ Yisml Jor j=1,2,..m, (2.3)
i=1

i=1 i=
i#j

then there is y' € Ker f\{0} with

YI>Y Y il Sfor j=12,..m (2.4)

i=1 =1
i)

(we define 3377 [y;,,[=0).

i=1
Proof. Take yeKer f\{0} satisfying (2.3).

Case 1. There exists je {1,2, .., m} with

Y= Z yi+ Z | Vit ml-

i=1 i=]
i#]J

Then we can find 8 > 0 with

n n—m f
y=0> ) y.+ [ Vigml +(m—1)8 ——.
Vi igl igl * (am - f})
[y
Let y/=y,— 6, yi =y, +0(f;/(a,,— 1)) for ie {1,2,...,m}\{j}, y/=yp, for
ie{m+1,..,n} and put y' =(y}, .., y)). Observe that

z j;‘yil = Z .fl'yt! + Z /;))lzﬁ)’j—f;g

i=1 i=1 if=m+1

m 6 n n
+Zf,-<y.»+ /, )+ S firi=Y fin=0
i=1 am—f/’ i=m+1 i=1

i#j

To finish the proof, take ie{1,2,.,m}\{j}. Since a,>m—2, then
a,, — f;>f;(m—3) which gives

oL

f;
o -’
(dm—1))

>(m-2)9m— .

(2.5)
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Combining (2.3) with (2.5) we obtain

m n-m
1
-Vl]>z yll(+ Z ka+m"
k=1 k=1
ki

which establishes formula (2.4).
Case 2.

V= Yt 2 | Viewml for j=1,2,..,m. (2.6)
oy -
Hence y, =y, = --- =p,,.
To demonstrate the above equalities we substract equalities (2.6) for
fixed j,ue {1, 2, .., m}. Consequently by (2.6),

n—m

—(m=2)y;= 3 [Viiml (2.7)

i=1
If n=m, y=0, a contradiction. If m <n, then

n--m

O= Z flyt= Z f.)’z+ Z f‘i#-m.]"i+m

i=1 i=1 i=1

n--m n-—m

=y -a,+ Z f;'+myi+m<.}’lam+ Z lf:-#myi+ml

i=1 i=1

s.},l 'am+ Z |yi+ml <,V1(m-2)+ Z *.Vi-kml :O
i=1 i=1
Since, by (2.7), y, <0 and a,, >m — 2, we may exclude Case 2. The lemma
is proved. |

LeMMA 24. Let feS(I") satisfy (2.2) and let f,<1. Let me {3, .., n}
Sulfill a,,<m-2, a, _>m=3, f,>0. If there exists yeKer f\{0}
satisfying the system of inequalities

m—1 n-m+1

yj> Z yi+ Z |yi+m71l for j=277m—l
i=1 i=1

it (2.8)

m—1 n—m
ym> Z y1+ z l)ylﬁ-mls

i=1 i=1
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then there exists y' e Ker f\{0} with

m—1 n—m+1

}’}> Z y’.l-+- Z |y3+m7,] Jor j=2,..m—1
i=1 i=1

i% (2.9)
1

P SR D M S §

i=1 i=1
Proof. Take yeKer f\{0} satisfying (2.8) and consider three cases.
Case 1.

n—nm

Vom> Z Vit X 1 Viemls

i=1 i=1

Then we can select 8 >0 with

-1 n—m
(m—2)8
Ym> Z Vit T A Viaml =0+ —.
i=1 i=1 ay 11—
Put y: =yl_6’ y]] =yj+(8/am71_l) (J:‘ 2, ...,m—l), yj :yj, for
j=m, .., n. Observe that

m—1

)
1o )—ny =y —0+ ) f,(» + — )+ Y [y

=1 i=2 i=m

= Z fi}'i =0.
i=1
Since a,,_,>m-3, 8/a,,_ ,—1>—0+ (m—3)6/a,_,—3). Combining
this inequality with (2.8), we get

n—m+1

> Z R S B for j=2,.,m—1

i=1 i=1
i#*)

m—1 n—m
)1 i t
}m> Z y,+ Z Iyi+ml’
i=1 i=1
which proves our claim.

Case 2. There exists je {2, .., m—1} with

n—m+1

Y= Z Yit+ Z [ Piem_1l;
i=1 =1
i#j
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Hence

m—1 n—m+1

yj_ff19> Z yit+ Z lyl'+m71|+6,

i=1 i=1
i#)J
for 8> 0 sufficiently small. Since f, <1,
6—f7'0<0 (2.10)

Put y'=(y), ., y,), where y; =y, +0, y) =y,— f7'6, ! =y, foris1, ) It
is clear that y'eKer /. Adding (2.8) to (2.10), we get for each ke
(2, m— 1N}

m—1 n—m+1
1 1 1
V> X it Y Ivhimo
j=1 i= |
oy ’
and
m—1 n—m
1 1 1
ym> Z y1+ Z ’yi+ml’

i=1 i=1

which completes the proof of this case.

Case 3.
m—1 n—m+1
yi= Y yit 2 AViem ul for j=2,..m—1 (2.11)
oy
m—1 n—m
Ym= 2 Vit 2 | Vieml- (2.12)

i=1 i=1

First we demonstrate that y,, > 0. If no, then by (2.11) for every je {2, ..,
m—1}

m—1 n—m+1

yi= X vt X Wiemoil =Y (2.13)

P
Substracting inequalities (2.11) for fixed j ke {2,.,m—1} we get
Ya=y3=---=y, . According to (2.12) and (2.13) we obtain y,_,=0
which gives 0=37_"*'|y,,,,_,|+y,. Since yeKer f and f, <1, then
Yiem—1=0fori=1,..,n—m+1 and consequently y =0, a contradiction.
Hence, y, >0 and reasoning as before we get y,=y;=---=yp,_,.
Subtracting (2.11) from (2.12) we obtain y,—y,=y,.—y, and so
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n m

y2=y3;= - =y,>0. Following (2.12) y; = —(m—=3)y,, ~ X2 [ Vii ml-
Hence,

n

0= fivi=) fivi+ Y fivi==(m=3)y,— % |yl

i=1 i=1 i=m+1 i=m+1

+(am—_])ym+ Z .ﬁy:z(am—m+2)ym+ Z ﬁyi

i=m+1 i=m+1

n

- Z ‘yi|<0,

f=m+ 1

since a,, <m~2 and y,,> 0. Thus we can exclude Case 3 and the proof of
Lemma 2.4 is fully complete.

REMARK 2.5. Let Pe P(X, Y), Y=Ker f, where f satisfies (2.2). Put for
i=1,.,nC;={geext(X*): +(goP)e;=||Pe,|}. Then g ecrit P (see (0.2))
if and only if ge\J,. 4 C;, where

A={ie{l, ., n}: |Pe| =P} (2.14)

Proof. Let gecrit P. Since ext X={te,}7_,+(goP)e;=|Pe;| for
some i€ {1, .., n}. It is clear that i€ A. The reverse is obvious.

LEMMA 2.6. Let fe S(X*) satisfy (2.2) and let Pye P(X, Y) is a minimal
projection determined by (0.10) and (0.11) for u=u(f) (see Corollary 0.14);
then:

(@) If a,>u—2 and u=i(f) (we write u=u(f) for brevity) then
A={1, ., u}. If a,>u—2 and u=m(f) then A={1,.,L} where
L=max{izm+1:f7'=8,} (we write m=m(f); see (0.13)).

by Iffa<l, a,_,>u—3 and a,<u—2, then A={2,..,L} where
L=max{izu fi=1,}.

Proof. (a) Let y° be given by (0.10). It is easy to verify that
Iyl =B, (2.15)
and that the following system of inequalities is consistent:

{1+f,»(||y°ll—2yf)=1+v=HPo“ for j=L.u 16

L+ £ 11y <1+v=| Pl for j>u+l.

According to Remark 0.11 and (2.15), we get the desired result.
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(b) Let y° be given by (0.11). As in the previous case it is easy to
check that

1y =rfty (2.17)

and that the following system of inequalities is consistent:

{1+f,-(Hy°H—2y,‘-))=1+V=IIP0|| for j=2,.,u

2.18
L+ £, 10 <14 v=[Pol for jeu+t %)

By Remark 0.11 we get the desired result.

Now we are able to prove the main result of this section.

THEOREM 2.7. Let fe S(X*) satisfy (2.2) and let u=u(f) be given by
(0.12).

If a,>u—2 (2.19)
or
iffh<l, a,_,>u-—3, and a,<u-—2, (2.20)

then the projection given by (0.10) and (0.11) is a SUM projection.

Proof. Let us consider a function f: S, — R given by
¢(y) =min{fy,g(y):geC}, (2.21)
where
C={gecrit Py: g(Pye;) = || Pyl for some ie {1,..,n}} (2.22)
and
k(g)=min{ie {1, .., n}: g(Poe;)= Py }. (2.23)

Assume that we can prove that for every ye Sy, ¢(y)<0. Hence by the
compactness of S, the constant y =sup{é(y): ye S, } is strictly negative.
We will prove that Py is a SUM projection with r= —v. To do this,
according to Theorem 0.8(b) and Remark 0.3 it is enough to demonstrate
that for every Pe P(X, Y) there exists ge C (It is clear that Cu —-C=
crit Py and Cn — C=¢) with

inf{ g(P — Po)e,  e,€ A} < —r |P— Py

(see (0.3)). So fix PeP(X,Y) and let P—P,=f(-)y for some yeVt
(we may assume y#0). Select geC with fi,, (/I ¥I)=¢(3/131)



STRONGLY UNIQUE PROJECTIONS 15

Note that for every e,e 4,, we have g(P—Pyle,=fg(y/Iy|)yl=
Junr 8/ ¥ 1 yll since ¢(y/|l yll) <0. Hence,

inf{g(P—Py)e:e,€A,}

= [ 8=/ ¥y IyI <y vl = —r |P— Py,

which, according to Theorem 0.8(b) gives our assertion.

To complete the proof, it suffices to show that ¢(y) <0 for every ye S,.
By (2.22), k(g)e A for every ge C (see (2.14)). By Remark 0.11, f},,>0.
Hence accordingly to (2.21), it is enough to verify that for every ye S,
inf{ g(y): ge C} <0. By contradiction, assume that there exists y e S, with
g(y) =0 for every g e C and consider two cases.

Case 1. a,>u—2. If u=i(f) then, following Lemma 2.6(a), the
set corresponding to P, A={l,..,u}. Consequently, by Remark 2.5
and (2.22), C=U)7_, D, where D,={geext X*:(goPy)e;=(P,l} By
Remark 0.11,

Di={(—1,., =1, 1, -1, ., —1,¢&,..6_,):

1

=&, s Ep_ ) EEXLITTHL.

Hence the inequalities g(¥) =0 for every g € C give system (2.3). According
to Lemma 2.3, we may find y'e S, with g(y')>0 for every ge C. Hence
for every ge C and e,€ A,

fle) g(y")>0 since i<n and  f,>0. (2.24)
Now define P= Py + f(-) y' and note that (2.24) implies
inf{g(P—Py)e, e,e A} >0. (2.25)

According to Theorem 0.8(a) and Remark 0.9, P, is not a minimal projec-
tion, which contradicts Theorem 0.10. If u( /) < i(f), then the set A is equal
to {1,.., L} where L is given in Lemma 2.6. Hence C= U7_, D, where D,
fori=1,2,..,uareasaboveand for izu+1. D,={(—-1,.., -1, 1, ¢, ..,
€ 1y L 8in s €,y 1)ie€ext({” ")} So to the system (2.3) we must
add the system

2 Y vt X1yl for j=u+l L
i=1 i=1
i

640,78/1-2
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By Lemma 2.3, there exists
y'eKer f

with

=Y Y Iph for j=12.u
i=1 i=1
i#J

Now replace f by f'=(1, fo, s fus fusis s f1) Where fo > fl, 2
.-+ > f}. Note that in view of Theorem 0.10 the operator

Po=1—f'(-))° (2.26)

(»° is the vector from X corresponding to P,) is a minimal projection onto
Ker /. If the change of f, , , is slight, then modifying slightly the n — u last
coordinates of vector y' we get y>=(y, .. Vi, yi, - y2)eKer f!
satisfying (2.4). Since 8, < 1/f, |, reasoning as in the previous situation by
Theorem 0.8(a) we get that P is not a minimal projection onto Ker f';
this is a contradiction.

Case 2. a,<u—2,a, >u-3, f,<l. Since a,<u—2, by (0.8),
u=i(f). If f,,, <f,, according to Lemma 2.6,

A=1{2, .., u} and C={) D,
i=2

where, in view of Remark 0.11,

Di= {(—1,’ _ls Ih ——19'-'9 _lu/ IERTER anfu-f»l):

ceext(I" “* Ny} for i=2,.,u—1
and
D,={(-1,..., 1,1, ¢, .,¢6,_,):ecext({’ *)}.

Hence the inequalities g(y)=0 for every ge C form system (2.8). By
Lemma 2.4 there exists y' e Y with g(y') >0 for every g e C. Reasoning as
in Case 1, we get a contradiction with the minimality of P,.
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Iff,.,=f, then C=% ,D,, where L is defined in Lemma 2.6 and
i=2

Di={(=1, ., =1, — 1,80 &ty Uiy iy v € )
geext({" %)} for izu
(for i=2, .., u the sets D, are defined as before). Hence to the system (2.8)
we must add the following inequalities:

u—1 n—u

ViZ 2 vt 2 A ivual for jzu+l
i=1 i=1

i#j

According to Lemma 2.4, there exists y' e Y with

u—1 n-u+l
y}>2yi‘+ Yooyl for j=2,.,u—1
oy
and
u—1 n—u+1
V> 2oyt Y vl
i=1 i=2

Modifying, as in Case 1, f onto /', where
f] :(fla '-~afuaf.14+1’ ’flll)’ :lH-l <fu’

and y' to »? belonging to Ker f!, we get a contradiction as in Case 1. The
proof of Theorem 2.7 is fully complete }.

In [97] it was shown by a different method that the conditions (2.19) and
(2.20) are equivalent to the unicity of minimal projection. Combining this
with Proposition 2.1 and Theorem 2.7 we get

THEOREM 2.8 Let Pye P(X, Y) be a minimal projection. Then P is a
unique minimal projection if and only if Py is a SUM projection.
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